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Summary

Detection of linkage to genes for quantitative traits re-
mains a challenging task. Recently, variance components
(VC) techniques have emerged as among the more pow-
erful of available methods. As often implemented, such
techniques require assumptions about the phenotypic
distribution. Usually, multivariate normality is assumed.
However, several factors may lead to markedly non-
normal phenotypic data, including (a) the presence of a
major gene (not necessarily linked to the markers un-
der study), (b) some types of gene # environment in-
teraction, (c) use of a dichotomous phenotype (i.e., af-
fected vs. unaffected), (d) nonnormality of the popula-
tion within-genotype (residual) distribution, and (e)
selective (extreme) sampling. Using simulation, we have
investigated, for sib-pair studies, the robustness of the
likelihood-ratio test for a VC quantitative-trait lo-
cus–detection procedure to violations of normality that
are due to these factors. Results showed (a) that some
types of nonnormality, such as leptokurtosis, produced
type I error rates in excess of the nominal, or a, levels
whereas others did not; and (b) that the degree of type
I error–rate inflation appears to be directly related to
the residual sibling correlation. Potential solutions to this
problem are discussed. Investigators contemplating use
of this VC procedure are encouraged to provide evidence
that their trait data are normally distributed, to employ
a procedure that allows for nonnormal data, or to con-
sider implementation of permutation tests.
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Introduction

Obtaining sufficient statistical power to detect genes in-
fluencing complex quantitative traits (i.e., quantitative-
trait loci [QTLs]) remains a daunting task (Risch and
Merikangas 1996; Allison and Schork 1997). One class
of techniques that has emerged as more powerful than
certain alternatives is the estimation of variance com-
ponents (VC) (Schork 1992, 1993; Amos 1994; Amos
et al. 1996, 1997; Fulker and Cherny 1996; Wijsman
and Amos 1997; Almasy and Blangero 1998; Williams
and Blangero 1999). Therefore, investigators may jus-
tifiably be motivated to use these techniques. Indeed, VC
techniques are beginning to be incorporated into genome
scans of quantitative traits (e.g., see Comuzzie et al.
1997; Pratley et al. 1998). In the context of genetic
“model-free” VC mapping in humans, one typically ex-
presses the phenotypic variances and covariances among
related individuals as a function of the (estimated) num-
ber of alleles shared identical by descent (IBD), at a ge-
netic locus, by those relatives.

However, it is noteworthy that such techniques, as
usually formulated, involve maximum-likelihood esti-
mation and likelihood-ratio testing. Specification of the
likelihood requires assumption of a particular error dis-
tribution within each IBD class. Typically, a multivariate
normal distribution is assumed. If the assumed distri-
bution is different from the true error distribution, two
classes of problems may occur. First, under the null hy-
pothesis of no linkage between the marker under study
and the QTL, the type I error rate may be higher than
the specified nominal level—hereafter referred to as the
“nominal a level”—or, conceivably, may be lower than
this level. Second, if linkage exists, the estimate of the
QTL effect may be biased, and statistical power may be
affected. In this report, we confine our attention to the
first type of problem. We hope that future research will
consider the second type of problem (also see Amos et
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al. 1996; Almasy and Blangero 1998; Williams and Blan-
gero 1999; Wang et al., in press).

There are several reasons why nonnormality might
occur. First—and perhaps foremost—investigators gen-
erally undertake QTL-mapping efforts when there is
strong prior evidence for a “major” gene or oligogene.
Such major or oligogenes will create mixed nonnormal
distributions (Matthysse et al. 1979; Schork et al. 1990a,
1990b, 1996). Although the “within-genotype” or re-
sidual distribution may be normal, this does not imply
that the overall trait distribution in the population at
large will be normal. In fact, one would never want to
see a normally distributed phenotype for mapping pur-
poses (see Discussion section). Of course, the presence
of a major gene or oligogene implies that somewhere in
the genome the null hypothesis of no oligogenic effects
is false. However, it does not imply that it is false for
the marker locus under study. This point was raised by
Lander and Botstein (1989, Appendix A4) in the context
of QTL mapping with experimental organisms.

A second possible source for nonnormality is gene #
environment (G#E) interaction (Pooni and Jinks 1976).
This can be the interaction either between a major gene
or oligogene and the environment or between a poly-
genic component and the environment.

A third possibility is that a phenotype may simply be
“intrinsically” nonnormal. By intrinsically nonnormal,
we simply mean that it is not normally distributed, for
reasons that have nothing to do with selective sampling,
the mixture distributions created by major genes or ol-
igogenes, G#E interactions, or the artificial dichoto-
mization of a continuous trait.

Fourth, some traits may be truly dichotomous or bi-
nary, such as diagnosis of type I diabetes. In other cases,
investigators either arbitrarily dichotomize a continuous
distribution into “high” and “low” categories and treat
the new discrete variable as a phenotype taking a value
of either 0 or 1 (e.g., see Motum et al. 1993) or assume
a threshold process with an underlying multivariate nor-
mal distribution (Duggirala et al. 1997). In either case,
the result is a clearly nonnormal distribution.

Finally, another possible reason for nonnormality is
selective (extreme) sampling. It is now well established
that, under some (but not all) circumstances, selection
of individuals or relative pairs that are phenotypically
extreme can dramatically increase statistical power
(Eaves and Meyer 1994; Risch and Zhang 1995, 1996;
Allison et al. 1998). However, if the overall population
distribution is normal, then the distribution among those
selected on the basis of having extreme phenotypes can-
not be normal. In theory, this can be managed appro-
priately in two ways. One of these ways involves incor-
porating the phenotypic scores from the individuals not
selected for genotyping and using a “full likelihood”
implementation, as described elsewhere (Kruglyak and

Lander 1995; Eaves et al. 1996). However, this requires
knowledge of the phenotypes of the unselected individ-
uals, which may not be available. The other approach
involves incorporating the selection probabilities into the
calculation of the likelihood (de Andrade et al. 1997).
However, this requires statistically adjusting the likeli-
hood of the data for the ascertainment event and may
reduce the power to detect linkage. Moreover, in some
cases, the investigator may not explicitly know the prob-
ability of an ascertainment event (e.g., when he or she
is recruiting very thin and obese subjects by placing a
public advertisement that simply requests very thin and
obese people to respond). Thus, when using selective
sampling, an investigator employing VC procedures may
be forced to ignore (or naively choose or be unaware
of) the selection and, thereby, violate an assumption un-
derlying the calculation of the test statistic.

In this report, we consider nonnormality due to these
factors, as well as its effects on the type I error rate. We
conduct our simulations in the context of a sibling-pair
study and use the VC test described by Fulker and
Cherny (1996). Given data on sib-pairs only, the test
described by Fulker and Cherny is identical to that de-
scribed by Amos (1994) and Almasy and Blangero
(1998), when IBD likelihoods are used or when the
markers are perfectly informative.

Material and Methods

Design

Our design was 2 levels of sample size # 12 distri-
butions # 3 degrees of residual correlation. By “residual
correlation” we mean the correlation between siblings’
phenotypes after the genotype’s effects at the QTL have
been removed. For siblings, this correlation is induced
by both other genetic influence on the trait and the
shared-common-environment influences on the trait
(Neale and Cardon 1992). A description of the levels
for each factor is provided below. For each parameter
set, 100,000 simulated data sets were generated under
the null hypothesis of no linkage at the marker locus.
Type I error rates were evaluated at putative a levels of
.05, .01, .001, and .0001. We also tested the procedure
and our software with data randomly sampled from a
bivariate normal distribution.

Generation of phenotypic data.—For the generation
of phenotypic data, we used 12 experiments. Sample
histograms of the marginal distributions used in our
study have been plotted in figure 1, and the population
means, variances, skewness, and kurtosis coefficients are
given in table 1. The values in table 1 were obtained
analytically.

Normal distribution.—First, we simulated data from
a bivariate normal distribution under the null hypoth-



Figure 1 Histograms from a random sample of individuals, for normal distribution (A), mixture distributions due to unlinked QTLs
(B–D), mixture distributions due to G#E (E–G), x2 distribution with 2 df (H), standard Laplace distribution (I), extreme sampling from a
normal distribution (J), and binary distribution with probability of “affection” .5 (K) and .1 (L). For computational convenience, 10,000
observations were used for each histogram, instead of 100,000.
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Table 1

Theoretical Moments for Studied Distributions

Distributiona Mean Variance Skewness Kurtosis

Normal 0 1 0 0
Mixture 1 .118 1.333 .587 1.253
Mixture 2 .000 1.500 .000 �.111
Mixture 3 .088 1.333 .805 2.467
Mixture 1 (G#E) 1 4.667 .755 3.842
Mixture 2 (G#E) 1 5 .537 1.040
Mixture 3 (G#E) 1 4.646 .860 5.346

2x(2) 2 4 2 6
Laplace 0 2 0 3
Extreme 0 3.249 0 �1.727
Binary (.5) .5 .25 0 �2
Binary (.1) .1 .09 2.67 5.11

a For the details of each distribution, see the text.

esis, to test our software and whether the statistical test
being used has asymptotically converged to the x2

distribution.
Mixture distribution.—To simulate a nonnormal mix-

ture distribution due to a QTL (not at the locus under
study), we arbitrarily selected scenarios involving bial-
lelic QTL. In the first experiment (mixture 1), the QTL
explained 25% of the phenotypic variance, the increas-
ing allele had a frequency of .20, and its mode of action
was recessive. For the second experiment (mixture 2),
the QTL explained 33% of the phenotypic variance,
both alleles had frequencies of .50, and the mode of
action was additive. For the third experiment (mixture
3), the QTL explained 25% of the phenotypic variance,
the increasing allele had a frequency of .15, and the
mode of action was recessive. In each case, the residual
distribution within each genotype class was set to be
normal, with a variance of 1.0. Although these effect
sizes may be larger than those which typically exist for
quantitative traits, they are not larger than those com-
monly estimated by segregation analyses (Schork et al.
1996), and they allow the effects of nonnormality to be
evaluated more clearly.

G#E interaction.—There are many possible models
of G#E interaction. To simulate a nonnormal distri-
bution due to G#E interaction, the same mixture mod-
els that have been discussed in the immediately preceding
subsection were employed, except that the phenotype
was computed as rather than as justY � G � R � G ∗ R

, where G is the mean value for the genotypeY � G � R
at the QTL and R is the residual term. In these cases,
the “residual correlation” is expressed as the correlation
in the R component, which, for these cases, will not
necessarily equal the phenotype correlation after ad-
justment for the QTL genotype effects. Specifically, when
this scheme was applied, G#E mixture 1 had a QTL
effect of 7.14% of the variance; G#E mixture 2, 10%;
and G#E mixture 3, 7.14%. This had the desirable

feature of allowing us to examine the effects of relatively
small QTL effects.

“Intrinsic” nonnormality.—To simulate intrinsic non-
normality, we used two models. In the first model, the
marginal distribution for each sibling was x2 with 2 df;
this simulated a markedly skewed distribution. In the
second model, the marginal distribution for each sibling
was a standard Laplace distribution (Evans et al. 1993);
this generated a symmetric but heavy-tailed (leptokur-
totic) distribution.

Binary distribution.—To simulate a binary (dichoto-
mous) distribution, we began by simulating an under-
lying genetic model for a quantitative trait, using the
same parameters that were used for mixture 2 described
above. We then dichotomized the distribution at a given
cut point, to produce a Bernoulli distribution with pa-
rameter p, where p is the probability of being affected.
Two different distributions were chosen. In the first dis-
tribution, p was set equal to .5, to simulate a symmetric
distribution; in the second distribution, p was set equal
to .1, to simulate a skewed distribution. When the data
are dichotomized with p set to .10, for population re-
sidual correlations of .10, .30, and .50 at the continuous
level, the expected values of the sample phenotypic cor-
relation at the dichotomous level are .09, .16, and .25,
respectively. When the data are dichotomized with p set
to .50, for population residual correlations of .10, .30,
and .50 at the continuous level, the expected values of
the sample phenotypic correlation at the dichotomous
level are .16, .25, and .34, respectively.

Selective sampling.—To simulate a selective sampling
situation, data were selectively sampled from a bivariate
normal distribution. Sibling pairs were selected if neither
sibling had a trait value between the 10th and 90th per-
centiles, the so-called EDAC (extreme discordant and
concordant) design (Dolan and Boomsma 1998). It is
noteworthy that such sampling affects the residual sib-
ling correlation (defined below); specifically, for popu-
lation correlations of .10, .30, and .50, the expected
values of the sample correlation for this extreme sam-
pling are .32, .76, and .92, respectively.

Residual Correlation

By “residual correlation” we mean the correlation be-
tween siblings’ phenotypes after the effects of genotype
at the QTL have been removed. This correlation is a
function of both the effects of other genes and the effects
of any environmental influence on the trait for which
siblings are correlated (Neale and Cardon 1992). Resid-
ual correlation affects the power of VC techniques
(Schork 1993), and it is possible that it also affects type
I error rates when normality is violated. Under the null
model of no linkage, the residual correlation equals the
phenotypic correlation. Residual correlations of .1, .3,
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and .5 were used. We recognize that .5 is a higher cor-
relation than is often observed in sibling data. We in-
clude it here to show the effect that strong residual cor-
relation can have. Moreover, although sibling
correlations �.5 are unusual, they have been observed
for some common traits, such as height (e.g., see Hopper
and Mathews 1983; Keith et al. 1983; Crawford et al.
1993; Christiaens et al. 1997).

Sample Size

Two sample sizes were used—100 sibling pairs and
500 sibling pairs. All sibling pairs were independent; that
is, there was only one sibling pair per family.

Generation of Genotypic Data

Because the model used to test for linkage (see the
Linkage-Test Statistic subsection, below) uses only IBD
status (and not genotype per se), we directly generated
an IBD status for each sibling pair, from a binomial
distribution with and , as would be the case1n � 2 p � 2

under the null hypothesis. This implies that we are work-
ing with perfectly informative markers.

Linkage-Test Statistic

We tested for linkage, using a likelihood-ratio test im-
plemented in a VC model as described by Fulker and
Cherny (1996). In brief, this method specifies the values
of the expected 2#2 phenotypic-covariance matrix for
groups of sibling pairs, as a function of three parameters
or VC. Specifically, the expected variances are equal to

, and the expected covariances are equal to2 2 2j � j � jQ F E

, where p is the proportion of alleles that pairs2 2pj � jQ F

share IBD, is the variance due to the QTL, rep-2 2j jQ F

resents other sources of variation (both genetic and en-
vironmental) that are shared by siblings, and repre-2jE

sents sources of variation that are not shared by siblings.
The test was also implemented with the raw data (i.e.,
not summarized as covariance matrices), for the prob-
ability that the pair shares zero, one, or two alleles IBD
at the marker locus. However, in the current case, this
is identical to using the estimated number of alleles IBD,
because the markers are perfectly informative. A likeli-
hood-ratio test is conducted to test the significance of

(i.e., under the null hypothesis, no covariation in the2jQ

trait should be explained by allele sharing, so H0:
2j �Q

). When data are normally distributed and the variance0
components are constrained to be nonnegative, the like-
lihood ratio for this test is distributed, asymptotically
under the null hypothesis, as a : mixture of and1 1 2x(1)2 2

a point mass at zero (Chernoff and Lehmann 1954; Self
and Liang 1987).

Linkage-Testing Software

Several software packages are available that allow VC
QTL analysis, including Mx (Neale 1997), SOLAR (Al-
masy and Blangero 1998), and ACT (de Andrade et al.
1997). Prior to conducting our main analysis, we gen-
erated five sample data sets of 500 pairs each. We then
used these test cases to insure the validity of our soft-
ware. We independently analyzed each data set by using
Mx with the raw data, Mx with the covariance matrices
only, ACT, and SOLAR. The likelihood-ratio statistics
that we obtained by the four different approaches were
very similar, confirming the validity and equivalence of
these approaches. After this demonstration, all simula-
tions (except the binary case) were conducted with the
Mx software. The binary cases were simulated and eval-
uated by the SOLAR software. In addition, as a final
check, several simulations were done on both Mx and
SOLAR.

A FORTRAN program was written to simulate data
for the various conditions to be tested. This program
used the functions g05ddf and g05caf in the Numerical
Algorithms Group library, to obtain pseudorandom
numbers from, respectively, the normal and uniform dis-
tributions. The simulated data were tested for the pres-
ence of a QTL, by an Mx script (Neale 1997). The script,
which is given in the Appendix, computed the likelihood
of the raw-data vectors, with a model that included ef-
fects of a QTL, a residual component shared between
siblings, and a residual component not shared between
siblings. Twice the difference between the log-likelihood
of this model and one in which the QTL effect was
omitted was used as a test for the presence of the QTL.
This procedure was repeated 100,000 times for each of
the models and conditions tested.

Results

Tables 2–7 display the results of the simulation. With
normal data (table 2 and figs. 1A and 2A), which serve
as a simple validity check on our simulation software,
the type I error rates were consistent with the nominal
a levels, for samples of 500. However, for the sample
size of 100 and low residual correlation, the error prob-
ability was slightly conservative (.03, instead of .05, type
I error rates). This result appears to be due to the fact
that the sample size is not large enough for the likeli-
hood-ratio test to behave as a x2.

Table 3 and figures 1B–D and 2B–D contain the re-
sults for the mixture distributions. As can be seen in
table 3, the empirical type I error rates were consistent
with the nominal a levels for mixture 2, which was sym-
metrical and less kurtotic than the normal distribution.
However, for mixtures 1 and 3, which were both skewed
and leptokurtotic, the type I error rates slightly exceeded
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Table 2

Type I Error Rates under Normal Distribution

N AND NOMINAL

a LEVELa

TYPE I ERROR RATE FOR

NORMAL DISTRIBUTIONb

r � .10 r � .30 r � .50

100:
.05 .02927 .05439 .05585
.01 .00038 .01040 .01188
.001 .00024 .00095 .00127
.0001 .00001 .00012 .00016

500:
.05 .04407 .05245 .05018
.01 .00736 .01074 .01028
.001 .00038 .00089 .01120
.0001 .00002 .00011 .00009

a N � sample size (i.e., no. of sibling pairs) used for each simulated
data set.

b 100,000 data sets were generated for each parameter set. r �
residual correlation.

the nominal a levels. Again, the degree of excess was
directly related to the residual correlations. With a sib-
ling correlation of .50, the type I error rate was �.10
for the nominal level, with the highly skeweda � .05
and kurtotic mixture 3. The excess error probability was
higher for the smaller sample size than for the larger
sample size.

Table 4 and figures 1E and F and 2E and F contain
the results for the mixture distributions due to G#E
interaction. As can be seen in table 4, the empirical type
I error rates consistently exceeded the nominal a levels
for some cases. The degree of excess was directly related
to the residual correlations. With sibling correlations of
.50, the type I error rates are often double the nominal
a level.

With the skewed ( ) distribution (table 5 and figs.2x(2)

1H and 2H), results consistently show that the empirical
type I error rates exceed the nominal a levels by a degree
that is directly related to the degree of correlation among
the sibling phenotypes. With correlations of .30 and .50,
the deviations are substantial. Results for the symmetric
but kurtotic Laplace distribution are given in table 5 and
figures 1I and 2I and are extremely similar, in both pat-
tern and magnitude, to those for the x2 distribution. Also
note that the tails of the distribution of the likelihood-
ratio test greatly exceed that predicted by the x2

distribution.
With simulation involving extreme sampling and no

correction for the extremity (table 6 and figs. 1J and 2J),
results show that the VC statistical procedure employed
is quite sensitive to this type of nonnormality. If naively
applied without correction to data from extreme sam-
ples, it will give far too many false positives when the
residual correlation is high. At the .0001 significance
level, the type I error rate was �100-fold higher than

that predicted by the x2 distribution, for residual cor-
relation �.30. When the residual correlation is high with
the binary distributions (for correlations .5 and .1; table
7 and figs. 1K and 2K), results show that there is an
excess of type I errors that is, again, directly related to
the degree of residual correlation.

It is interesting to note the relationship between sam-
ple size and significance of the tests (size). For the mix-
ture distributions shown in tables 3 and 4, increasing
the sample size considerably decreased the size of the
test, specifically for the more extreme significance levels.
In contrast, the highly kurtotic distributions show in
tables 5 and 6 showed virtually no improvement with
increasing sample size.

These results suggest that convergence of the likeli-
hood-ratio test to a limiting x2 distribution is, at best,
very slow when highly platy- or leptokurtotic distribu-
tions are considered. More generally, when the data are
not normally distributed, likelihood theory does not in-
sure that the likelihood-ratio test approaches a x2 dis-
tribution as the sample size increases.

In general, the pattern of results was not dramatically
different for different nominal a levels or different sam-
ple sizes; the main factors influencing the degree to which
the empirical type I error departed from the nominal
rate were the marginal phenotypic distribution (specif-
ically the magnitude of leptokurtosis) and residual cor-
relation. This pattern is summarized graphically in figure
2, for 500 sibling pairs and .a � .05

One can note that the typical genetically related in-
fluences, such as mixtures of normals, do not greatly
inflate the type I error unless those mixtures are very
extreme and heteroscedastic. By contrast, incorrectly as-
suming normality when there is marked kurtosis or
skewness leads to a significant increase in the type I error
rate, in the presence of sibling correlation.

Discussion

Investigators contemplating the use of a likelihood-
ratio test in the VC framework, for detection of QTL,
can take both comfort and cautions from our results.
On the positive side, our validity check shows that three
major software packages (Mx, SOLAR, and ACT) yield
equivalent answers when applied to the same data. Sec-
ond, for many of the distributions likely to be encoun-
tered by applied investigators, the likelihood-ratio test
was remarkably robust. However, on the cautionary
side, in some situations the likelihood-ratio test was
quite sensitive and resulted in a substantial excess of type
I errors.

The current findings show that the likelihood-ratio
test in the VC approach to QTL detection considered is
robust to some but not all types of deviations from nor-
mality that are produced by several different mecha-
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Table 3

Type I Error Rates under Mixture Distributions Due to Unlinked QTLs

N AND NOMINAL

a LEVEL

TYPE I ERROR RATE UNDER

Mixture 1a Mixture 2b Mixture 3c

r � .10 r � .30 r � .50 r � .10 r � .30 r � .50 r � .10 r � .30 r � .50

100:
.05 .05819 .06775 .07797 .02900 .05059 .05634 .04457 .07038 .09777
.01 .01213 .01681 .02209 .00038 .00910 .01170 .00913 .01855 .03428
.001 .00137 .00211 .00413 .00025 .00840 .00120 .00092 .00282 .00827
.0001 .00011 .00032 .00075 .00001 .00005 .00009 .00010 .00031 .00207

500:
.05 .06321 .06449 .06851 .04438 .05295 .04904 .06169 .07085 .08570
.01 .01466 .01600 .01777 .00707 .01113 .00982 .01360 .01847 .02756
.001 .00192 .00221 .00276 .00056 .00102 .00110 .00148 .00318 .00571
.0001 .00018 .00034 .00048 .00003 .00008 .00004 .00012 .00051 .00145

NOTE.—See footnotes to table 2.
a “Increasing” allele frequency � .20; QTL explains 25% of the phenotypic variance; mode of action is recessive.
b “Increasing” allele frequency � .50; QTL explains 33% of the phenotypic variance; mode of action is additive.
c “Increasing” allele frequency � .15; QTL explains 25% of the phenotypic variance; mode of action is recessive;

100,000 data sets were generated for each parameter set.

nisms. The degree of type I error–rate inflation was di-
rectly related to the residual phenotypic sibling
correlation. With correlations �.50, the type I error rates
at the were �.20 for some models. When ex-a � .05
cessive type I error rates did occur, for samples sizes
�500 sibling pairs there was no great diminution of this
effect for markedly nonnormal distributions. These re-
sults are quite consistent with findings from the general
structural equation–modeling literature, showing a
1.5–2-fold inflation of the type I error rate under mod-
estly kurtotic distributions, with sample sizes !1,000
(Hu and Bentler 1992). On the other hand, for more
modest forms of nonnormality and lower residual cor-
relation, the likelihood-ratio test with the VC method
appeared to be quite robust.

It is possible that investigators are used to assuming
that the statistical tests that they employ are highly ro-
bust to violations of normality, particularly when the
sample size includes �100 observations. However, this
confidence may come from robustness studies involving
tests of means. Nearly 50 years ago, Box (1953, p. 318)
recognized that tests on variances were less robust. He
stated that “it would be appear, however, that this re-
markable property of ‘robustness’ to non-normality
which these tests for comparing means possess, and
without which they would be much less appropriate to
the needs of the experimenter, is not necessarily shared
by other statistical tests, and in particular is not shared
by tests for equality of variances.”

There is a large body of statistical theory concerning
both the validity of the likelihood-ratio test under model
misspecification and available options for making infer-
ences more robust (e.g., see Foutz and Srivastava 1977;
White 1994). In the context of VC tests, it is clear that

nonzero kurtosis is a primary culprit leading to devia-
tions of the test statistic from its asymptotic distribution
(Beaty et al. 1985). A number of alternative tests based
on simple corrections of either the likelihood-ratio test
or score tests are available (Beaty et al. 1985; White
1994) and could serve as alternatives to the classic like-
lihood-ratio test when multivariate normality is grossly
violated.

It is important to consider the conditions of these sim-
ulation studies, to place them in context. These simu-
lations involve sibling pairs, perfectly informative mark-
ers, , sample sizes of 100–500, siblinga � .05–.0001
correlations of .10–.50, and particular types of nonnor-
mality. The extent to which our results apply to other
sampling units (e.g., large sibships or pedigrees), other
types of VC-based tests (Amos et al. 1996), less-infor-
mative markers, or different nominal a levels, sample
sizes, sibling correlations, and types of nonnormality re-
mains open to question. It is especially interesting to
determine whether results would generalize to the more
common case of partially informative markers. Whether
such cases would ameliorate or exacerbate the effects of
marked nonnormality remains unknown.

Some of the types of nonnormality that we have stud-
ied may be more extreme than those commonly en-
countered in practice. However, others may be quite typ-
ical. For example, in two large population-based cohorts
that we have reported elsewhere (Allison et al., in press),
body-mass index (BMI [kg/m2]) had skewness coeffi-
cients of 1.0–1.2 and kurtosis coefficients of 2.5–3.3.
Similarly, the third National Health and Nutrition Ex-
amination Survey (National Center for Health Statistics
1997), a nationally representative sample of the U.S.
population in whom weight and height were meticu-
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Table 4

Type I Error Rates under Mixture Distributions Due to G#E

N AND NOMINAL

a LEVEL

TYPE I ERROR RATES UNDER

Mixture 1 (G#E)a Mixture 2 (G#E)b Mixture 3 (G#E)c

r � .10 r � .30 r � .50 r � .10 r � .30 r � .50 r � .10 r � .30 r � .50

100:
.05 .06757 .10015 .12626 .03152 .06053 .08561 .06939 .12422 .19220
.01 .02059 .03832 .05588 .00586 .01473 .02613 .03042 .06146 .11232
.001 .00455 .01053 .01844 .00077 .00232 .00490 .01015 .02408 .05485
.0001 .00111 .00295 .00639 .00007 .00037 .00083 .00347 .00944 .02588

500:
.05 .08431 .10145 .11297 .04543 .06472 .07915 .08551 .12002 .15783
.01 .02528 .03532 .04393 .00784 .01653 .02301 .02885 .05367 .08278
.001 .00433 .00809 .01207 .00071 .00207 .00429 .00778 .01830 .03547
.0001 .00079 .00191 .00344 .00007 .00028 .00007 .00254 .00665 .01653

NOTE.—See footnotes to table 2.
a “Increasing” allele frequency � .20; mode of action is recessive.
b “Increasing” allele frequency � .50; mode of action is additive.
c “Increasing” allele frequency � .15; mode of action is recessive; 100,000 data sets were generated for each

parameter set.

Table 5

Type I Error Rates under and Laplace Distributions2x(2)

N AND NOMINAL

a LEVEL

TYPE I ERROR RATE UNDER

2x(2) Laplace

r � .10 r � .30 r � .50 r � .10 r � .30 r � .50

100:
.05 .04933 .11125 .18658 .04521 .11550 .17290
.01 .01222 .04117 .09986 .01036 .04423 .08901
.001 .00228 .01003 .04037 .00131 .01154 .03562
.0001 .00037 .00270 .01584 .00002 .00292 .01416

500:
.05 .06824 .11860 .18192 .06674 .11800 .17031
.01 .01774 .04681 .09957 .01590 .04784 .08789
.001 .00258 .01266 .04366 .00215 .01391 .03564
.0001 .00039 .00346 .02040 .00044 .00431 .01464

NOTE.—See footnotes to table 2.

lously measured, had, for BMI, skewness and kurtosis
coefficients that were 1.2 and 3.4, respectively, even after
adjustment for age and sex (National Center for Health
Statistics 1997). These values are quite similar to those
for some of the models that we have simulated.

The combination of nonnormality and positive sibling
correlation (although perhaps not as high as .50) may
be common for several reasons. First, apart from the
seemingly unlikely circumstance that siblings are nega-
tively correlated for environmental influences on the
phenotype, the presence of some genetic influence on the
trait virtually assures that there will be some sibling cor-
relation. If siblings were not correlated for the trait, it
is unlikely that a QTL-mapping study would ever be
initiated. Second, if there are any “major” genes or “ol-

igogenes” for the trait under study, then this would also
produce nonnormality (Lander and Botstein 1989;
Wright and Kong 1997), and, again, one typically enters
a QTL-mapping study only when there is a strong priori
reason to suspect major genes or oligogenes. Finally, in-
dependent of any particular theorizing about genetic ef-
fects, it has been noted that, for whatever reason, many
human traits are not normally distributed (Micceri
1989). Thus, the issue raised herein may apply to many
QTL-mapping situations.

In this regard, the nonnormality of both the Laplace
distribution and other kurtotic but symmetric distribu-
tions is of special interest. It points out that analysts
should not rely on the apparent symmetry of a distri-
bution as being indicative of normality sufficient for ap-
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Table 6

Type I Error Rates under Extreme Sampling
Distribution

N AND NOMINAL

a LEVEL

TYPE I ERROR RATE UNDER

EXTREME SAMPLING

DISTRIBUTION

r � .10 r � .30 r � .50

100:
.05 .07316 .17313 .20787
.01 .02101 .09528 .11618
.001 .00397 .04541 .04820
.0001 .00108 .02382 .01766

500:
.05 .06441 .15371 .19736
.01 .01643 .07488 .11401
.001 .00229 .02891 .05388
.0001 .00028 .01123 .02575

NOTE.—See footnotes to table 2.

Table 7

Type I Error Rates under Binary Distributions

N AND NOMINAL

a LEVEL

TYPE I ERROR RATE UNDER

Binary (.5) Binary (.1)

r � .10 r � .30 r � .50 r � .10 r � .30 r � .50

100:
.05 .04728 .06396 .08004 .07785 .07405 .10100
.01 .01015 .01728 .02643 .02775 .04581 .06663
.001 .00150 .00339 .00617 .00823 .01551 .02339
.0001 .00027 .00078 .00204 .00244 .00486 .00904

500:
.05 .05587 .05992 .04094 .08906 .12165 .15087
.01 .01362 .01356 .01935 .03068 .05069 .07403
.001 .00162 .00208 .00368 .00937 .01528 .02672
.0001 .00011 .00029 .00068 .00433 .00534 .01190

NOTE.—See footnotes to table 2.

plication of asymptotic inference (Bentler et al. 1991).
Clearly, the nonnormality of the symmetric Laplace-dis-
tribution example led to gross violations in the presence
of high residual correlations. The reason for this appears
to be the combination of (a) overweighting of trait values
in the tail, beyond that expected by normality, and (b)
a sibling correlation that makes it likely that both values
in the sibship will occur in the same area of distribution.
Under such circumstances, random IBD configurations
that by chance co-occur with higher sharing for such
pairs will provide LOD scores that are inflated. Such
distortions might be detected in the context of a genome
scan, if they lead to an unusually large number of large-
LOD-score peaks.

Simple transformation will often be sufficient to nor-
malize a nonnormal distribution to such an extent that
inference is valid. However, such transformation cannot
be assumed to always work. For example, if the x2 dis-

tribution depicted in figure 1H were transformed via a
log transformation, the data would still be significantly
skewed and kurtotic. Of course, more-general transfor-
mations are available (Box and Cox 1964; George and
Elston 1988), but even these are not guaranteed to in-
duce normality. If the distribution is continuous, an in-
verse Gaussian transformation based on ranks can al-
ways be relied on for normalization, although the new
reliance on order statistics may create additional issues
and potentially decrease power (Wilcox 1997).

The point that the presence of a major gene or oli-
gogene generates a nonnormal mixture distribution has
made been before (Lander and Botstein 1989; Schork et
al. 1990a, 1990b, 1996; Amos et al. 1996) but seems
not to be widely appreciated. The fundamental quandary
in the use of likelihood ratio–based tests of allele sharing
for linkage analyses in VC models is that one is typically
relying on second-order statistics—that is, variances and
covariances—to model a phenomenon (i.e., the presence
of a linked gene) that also influences first-order statistics
(i.e., means) of the trait distribution. Consider the fact
that, if a locus influences a quantitative trait, then in-
dividuals with different genotypes will have trait values
that cluster around different mean values, thus creating
a “mixture” of individuals in the population (i.e., those
with different genotypes). The mean effects and fre-
quency of these genotypes will then create (potentially)
markedly nonnormal trait distributions, although the
distribution of trait values within a particular genotypic
category could be normal. By relying on test statistics
that do not consider the effects that underlying geno-
types have on mean trait values but that, with respect
to genotype and phenotype, use only variances or co-
variances among relatives, one may require, for relevant
test-statistic formulation, normality of the overall trait
distribution in the population at large. This requirement
stands in contrast to the potential existence of a locus
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Figure 2 Empirical type I error rate from 100,000 samples of
500 sib pairs, at , for normal distribution (A), mixture distri-a � .05
butions due to unlinked QTLs (B–D), mixture distributions due to
G#E (E–G) x2 distribution with 2 df (H), standard Laplace distri-
bution (I), extreme sampling from a normal distribution (J), and binary
distribution with probability of “affection” .5 (K) and .1 (L).

effect and can create problems. This point requires
greater recognition. Linkage tests that simultaneously
accommodate the VC but also account for a mixture
distribution by modeling the mean genotype effects may
be useful in addressing this problem (Schork 1992), but
that approach may be computationally prohibitive (see
Schork 1991). In our study, the presence of a mixture
of normals (mixtures 1–3) did not greatly increase the
type I error rate until they became extreme and were
combined with heteroscedasticity.

With regard to VC, only when it can be established
that the asymptotic distribution of this test statistic holds
for the application being considered does it seem to be
prudent to make inferences based on the likelihood-ratio
test. Fortunately, it is possible to make such an assess-
ment via simulation, and methods exist for doing so
(e.g., see Iturria et al., in press). If it is demonstrated
that the asymptotic test distribution does not hold, then
alternative approaches, involving modifications of the
VC method, to make it more robust, can be employed.
These approaches may include alternative estimation
methods, such as generalized estimation equations
(Amos 1994) or least squares (Goldstein 1994; Elston
et al., in press); alternative robust test statistics, such as
the robust-score test (Beaty et al. 1985); utilization of a
multivariate t distribution that allows fatter tails (Lange
et al. 1989); or computationally intensive permutation-
based testing (Guerra et al., in press; Iturria et al., in
press).

A second potential response to marked nonnormality
would be to return to more-robust procedures utilizing

only pairwise differences between siblings, such as the
traditional Haseman-Elston test (Haseman and Elston
1972; Wan et al. 1997) or the nonparametric analogue
of it (Kruglyak and Lander 1995). Given the relatively
lower power of pair-difference–based methods com-
pared with the VC approach (Wright 1997; Williams
and Blangero 1999), such a choice may be suboptimal.

A third option is to transform the data to approximate
normality, as has been discussed above. In many cases
this will work quite well, especially either when the
source of nonnormality is scale dependent or in some of
the G#E models that we have simulated. However, there
is no guarantee that a transformation exists that will
make a particular error distribution normal. Moreover,
it is possible that, under the alternative hypothesis, such
a procedure might decrease power or obscure other trait-
relevant phenomena. As stated above (see the Introduc-
tion section), the presence of a QTL induces a mixture
distribution, and forcing the data to be normally dis-
tributed might remove some of the apparent effect of
the QTL (Schork and Schork 1989; Schork et al. 1996).

A fourth option would be to abandon the assumption
that the test statistic (twice the natural log of the like-
lihood ratio) has a particular distribution (i.e., a :1 1

2 2

mixture of and 0) and, instead, derive critical values2x(1)

of the test statistic via distribution-free resam-
pling–based techniques (Schork and Schork 1989; Dunn
et al. 1993; Good 1994; Guerra et al., in press), as dis-
cussed above. Although theoretically sound, this ap-
proach could be computationally demanding.

Fifth, in some cases considered that we have consid-
ered, it is possible to alter the likelihood calculation, to
account for the nonnormality. This is the case for non-
random sampling, and, within Mx, SOLAR and ACT,
weights or ascertainment correction could be used, pro-
vided that the sampling scheme is known. Alternatively,
data from nongenotyped sibling pairs used to screen the
selected pairs could be included in the analysis, if we
assume that the data are missing at random (Little and
Rubin 1987; Neale, in press). For the G#E cases, it may
also be possible to model the G#E effect explicitly and
to reduce the problem to distributions that are normal
when conditioned on the genotypic or environmental
values.

Finally, some investigators (Astemborski et al. 1985;
Beaty et al. 1985, 1987a, 1987b; Amos et al. 1996) have
proposed “robust” VC methods, based on quasi-likeli-
hood, that should be less dependent on the normality
assumption as discussed above.

In conclusion, results that have been provided herein
clearly show that the likelihood-ratio test within the VC
QTL-detection procedure studied is robust to some types
of nonnormality but is not so to others. Our results
certainly indicate that blindly applying the likelihood-
ratio test in a VC QTL-mapping analysis, without regard
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to the phenotypic distribution, is an unsound practice.
However, we wish to emphasize that we believe that VC
models are among our most powerful tools. Thus, we
are suggesting both a careful examination of distribu-
tions prior to analysis and, when needed, application of
modifications/corrections to the standard VC implemen-
tation, as has been discussed above (e.g., see Amos et
al. 1996; Guerra et al., in press; Wang et al., in press).
Several alternatives that preserve the power of the VC
approach under the alternative hypothesis but offer bet-

ter control of the type I error rate under nonnormality
have been discussed. Further research is needed to eval-
uate, empirically, the performance of these techniques.
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Appendix

Mx Script

! Mx script to test equality of covariances in 3 groups
! Any characters after a “!” on a line are comments
! Three groups
#Ngroups 3
Group 1: IBD 2 cases
Data NInput�3 ! Three variables to be analyzed
Labels IBD Sib1 Sib2 ! Names for variables
Rectangular file�simnor.rec ! Read data file
! The file simnor.rec contains ibd sib1 sib2 records of the form
! 1 �4.770278154788629E�002 �0.818980724789924
! 2 �6.528038280488491E�002 �5.055716933976841E�002
! 2 �2.196692932777173E�002 �0.426106954533204
! 1 �1.24327779081014 �0.212518588249240
! 0 �0.604940258106770 2.31134951141858
Select if ibd � 2 ! Select IBD�2 cases
Select Sib1 Sib2; ! Drop ibd from analysis
Begin Matrices;
X Full 1 1 Free ! Additive QTL variance component
Y Full 1 1 Free ! Residual shared covariance component
Z Full 1 1 Free ! Residual nonshared variance component
M full 1 2 Free ! Free parameters for means
End Matrices;
Specify M 4 4 ! Equate mean parameters for sib1 and sib2
Start 1 all ! Start all free parameters at 1.0
Begin Algebra;
Q�X*X’; ! Compute squared QTL component
R�Y*Y’; ! Compute squared residual shared component
E�Z*Z’; ! Compute squared residual nonshared component
End Algebra;
Covariance Q�R�E F Q�R_! Construct 2#2 predicted covariance matrix
Q�R F Q�R�E; ! To fit to sib1,sib2 phenotypes
Means M; ! Predicted means
End Group;
Group 2: IBD 1 cases ! Second group, commands as above
Data NInput�3
Labels IBD Sib1 Sib2
Rectangular file�simnor.rec
Select if IBD�1
Select Sib1 Sib2;
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Begin Matrices�Group 1; ! Equate all matrices to those of group 1
H Full 1 1 ! .5 constant
End Matrices;
Matrix H .5
Covariance Q�R�E F h@Q�R_! IBD 1 share half of QTL covariance
h@Q�R F Q�R�E;
Means M;
End Group;
Group 3: IBD 0 pairs
Data NInput�3
Labels IBD Sib1 Sib2
Rectangular file�simnor.rec
Select if ibd�0
Select Sib1 Sib2;
Begin Matrices�Group 1;
End Matrices;
Means M;
Covariance Q�R�E F R_! No QTL covariance for IBD 0
R F Q�R�E;
Option nd�6 ! 6 decimal places of precision
Option Issat ! This is full, or a saturated model
Option Multiple ! Prepare to fit submodel next
End Group ! End of first job
Drop X 1 1 1 ! Drop (fix at 0) QTL component
End ! End of submodel job

Electronic-Database Information

The URL for data in this article is as follows:

Numerical Algorithms Group, http://www.nag.co.uk (for func-
tions g05ddf and g05caf)
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